
) at .metastore.RetryingHMSHandler.(RetryingHMSHandler.java:83) at .(RetryingHMSHandler.java:92) at .(HiveMetaStore.java:6902) at .metastore.HiveMetaStoreClient.(HiveMetaStoreClient.java:164) at .metastore.HiveMetaStoreClient.(HiveMetaStoreClient.java:129) at 0(Native Method) at (NativeConstructorAccessorImpl.java:62) at (DelegatingConstructorAccessorImpl.java:45) at .newInstance(Constructor.java:423) at .DynConstructors$Ctor.newInstanceChecked(DynConstructors.java:60) at .DynConstructors$Ctor.newInstance(DynConstructors.java:73) at .HiveClientPool.newClient(HiveClientPool.

Apache iceberg spark code#
The above code results in the following exception:Įxception in thread "main" .RuntimeMetaException: Failed to connect to Hive Metastore at .HiveClientPool.newClient(HiveClientPool.java:63) at .HiveClientPool.newClient(HiveClientPool.java:30) at .ClientPool.get(ClientPool.java:117) at .n(ClientPool.java:52) at .HiveTableOperations.doRefresh(HiveTableOperations.java:121) at .refresh(BaseMetastoreTableOperations.java:86) at .current(BaseMetastoreTableOperations.java:69) at .loadTable(BaseMetastoreCatalog.java:102) at .$doComputeIfAbsent$14(BoundedLocalCache.java:2344) at .compute(ConcurrentHashMap.java:1853) at .(BoundedLocalCache.java:2342) at .(BoundedLocalCache.java:2325) at .(LocalCache.java:108) at .(LocalManualCache.java:62) at .loadTable(CachingCatalog.java:94) at .SparkCatalog.loadTable(SparkCatalog.java:125) at .SparkCatalog.loadTable(SparkCatalog.java:78) at .SparkSessionCatalog.loadTable(SparkSessionCatalog.java:118) at .2Util$.loadTable(CatalogV2Util.scala:283) at .$ResolveRelations$.loaded$lzycompute$1(Analyzer.scala:1010) at .$ResolveRelations$.loaded$1(Analyzer.scala:1010) at .$ResolveRelations$.$anonfun$lookupRelation$3(Analyzer.scala:1022) Caused by: MetaException(message:Version information not found in metastore. Table.updateProperties().set(TableProperties.WRITE_NEW_DATA_LOCATION, location).commit() Table table = catalog.createTable(tableId, schema, spec) HadoopCatalog catalog = new HadoopCatalog(new Configuration(), location) Currently I am using Iceberg in my project, so I am having one doubt in that. config("_catalog", ".SparkSessionCatalog") The nessie-spark-extensions jars are distributed by the Nessie project and contain SQL extensions that allow you to manage your tables with nessie’s git-like. SaaS tiers apply to each platform component individually.SparkSession` spark = SparkSession.builder() The iceberg-spark-runtime fat jars are distributed by the Apache Iceberg project and contains all Apache Iceberg libraries required for operation, including the built-in Nessie Catalog.
Apache iceberg spark software#
IBM makes no representation that SaaS and software features and capabilities will be the same. Unless otherwise specified under Software pricing, all features, capabilities, and potential updates refer exclusively to SaaS. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion. Information about potential future products may not be incorporated into any contract. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision.

1Capacity Unit Hour pricing depends on the environment and tools utilized within a billing month.ĢFor foundation model inference, charges are based on a Resource Unit (RU) metric which is equivalent to 1000 token (including both input and output tokens).ģIBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion.
